Header Ads

Header ADS

Prove that, complement of two independent events A and B also independents.

 Q. Prove that, complement of two independent events A and B also independents. 

Proof:

    We know if  A and B is independents then P( AB) = P(A) . P(B)
    Also, know that P(A') = 1 - P(A) and P(B') = 1 - P(B)

    Now, P(A'B') = P((AB)')                   [Using De Morgan's]
                            = 1 - P(AB) 
                            = 1 - P(A) - P(B) - P(AB)
                            = [1 - P(A)] - P(B) - P(A) . P(B)
                            = [1 - P(A)] - P(B) [1 - P(A)]
                            = [1 - P(A)] . [1 - P(B)]
                            = P(A') . P(B')

 Therefore, P(A'B') = P(A') . P(B'), So, we can say that, complement of two independent events A and B also independents. ☺

                         
collected image

No comments

Theme images by merrymoonmary. Powered by Blogger.